Boundedness of the Bergman projections on Lp spaces with radial weights

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BOUNDEDNESS OF THE BERGMAN PROJECTIONS ON Lp SPACES WITH RADIAL WEIGHTS

D |f(z)|dμ(z) )︀1/p < ∞ and by La(D, dμ) (or La(D) for short) the subspace of the space L(D) comprising the functions that are analytic on D. If p = 2, La(D) is a Hilbert subspace of L2(D) and it is called Bergman space. Let P denote the orthogonal projector of L2(D) on La(D) (Bergman projection). Let {δn}n=0 be defined by δn = (︀ 2π ∫︀ 1 0 r 2n+1w(r) dr )︀1/2 . Then, the sequence of functions ...

متن کامل

Boundedness of the Bergman Type Operators on Mixed Norm Spaces

Conditions sufficient for boundedness of the Bergman type operators on certain mixed norm spaces Lp,q(φ) (0 < p < 1, 1 < q <∞) of functions on the unit ball of Cn are given, and this is used to solve Gleason’s problem for the mixed norm spaces Hp,q(φ) (0 < p < 1, 1 < q <∞).

متن کامل

Boundedness of the Riesz Projection on Spaces with Weights

Let ∂D be the unit circle in the complex plane, define the function χ on ∂D by χ(eiθ) = eiθ, and set P = {p : p = ∑Nk=−N ckχ}. Let σ be normalized Lebesgue measure on ∂D. The Riesz projection P+ is defined on P by the formula P+( ∑N k=−N ckχ k) = ∑N k=0 ckχ k. In [4], Paul Koosis proved: Theorem 1 (Koosis). Given a non-negative function w ∈ L1, there exists a non-negative, non-trivial function ...

متن کامل

Bergman projections on weighted Fock spaces in several complex variables

Let ϕ be a real-valued plurisubharmonic function on [Formula: see text] whose complex Hessian has uniformly comparable eigenvalues, and let [Formula: see text] be the Fock space induced by ϕ. In this paper, we conclude that the Bergman projection is bounded from the pth Lebesgue space [Formula: see text] to [Formula: see text] for [Formula: see text]. As a remark, we claim that Bergman projecti...

متن کامل

A Note on the Boundedness of Operators on Weighted Bergman Spaces

Let ρ be a weight function, let X be a complex Banach space and let Bρ denote the space of analytic functions in the disc D such that R 1 0 ρ(1 − r)M1(f ′, r) dr < ∞, we prove that, under certain assumptions on the weight, the space of bounded operators L(Bρ,X) is isometrically isomorphic to the space Λρ(X) of X-valued analytic functions such that ‖F ′(z)‖ = O ρ(1−|z|) 1−|z| . Several applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications de l'Institut Mathematique

سال: 2009

ISSN: 0350-1302,1820-7405

DOI: 10.2298/pim0900005d